
2025/02/16 04:06 1/2 11 Organising Code

HAMPEL SOFTWARE ENGINEERING - https://dokuwiki.hampel-soft.com/

11 Organising Code

General Advice

It is imperative to keep control over all dependencies of a project. Ideally, all required resources either
live inside the project folder (repository) or are maintained via a separate, dedicated mechanism like
a package manager.

Otherwise, when the project is opened on a different computer (eg when the Git repository is cloned
by another team member), LabVIEW will fail to find those dependencies that are stored in a different
(relative) location or not available at all on that machine. Further problems can occur during the build
process of such a project.

The preferred location for dependencies is the project folder. For reuse code that should live outside
any project, the de-facto standard is <vi.lib>, one of the specially treated symbolic locations within
LabVIEW, which is maintained via the JKI VI Package Manager. Other special symbolic locations
include <user.lib> and <instr.lib>.

Read more about Paths in LabVIEW.

Any VIs or controls that are loaded from a different path than the ones mentioned above
will make LabVIEW link statically to those files, which will cause problems sooner or later.

When using code or VIs from NI Examples, always make a copy of these example VIs
and save it into the project folder.

Project File

See Managing a Project in LabVIEW on ni.com

Libraries

See Using Libraries in LabVIEW Projects on ni.com

Performance

https://dokuwiki.hampel-soft.com/kb/labview/dependencies#paths
https://www.ni.com/docs/en-US/bundle/labview/page/managing-a-project-in-labview.html
https://www.ni.com/docs/en-US/bundle/labview/page/using-libraries-in-labview-projects.html


Last update: 2024/07/01 11:47 kb:labview:organisation https://dokuwiki.hampel-soft.com/kb/labview/organisation

https://dokuwiki.hampel-soft.com/ Printed on 2025/02/16 04:06

Most library types do not load their VIs. They do load their nested libraries. Classes and XControls are
the only two types of libraries that load their member VIs.

LabVIEW uses the Read Link Info application method to harvest the linker graph info without loading
the files.

Migrating VIs into .lvlib

Any callers […] will “accept” the change of the VIs being moved into an LVLIB. This was a behaviour
that NI added, intentionally, to ease the migration to LVLIB's (I heard about it from Aristos Queue /
SLM). However, callers will not accept a change in a subVI being moved into a different/renamed
LVLIB or being removed from an LVLIB. Callers only accept a change of a subVI moving into an LVLIB,
as long as the subVI's path on disk is the same.
(Jim Kring on Discord)

Beware: Migrating VIs into an .lvlib cannot be undone from within LabVIEW! Once you
update and save VIs that have the migrated code as dependency, you need a backup or
source code control to go back.

Classes

See LVOOP.

LLBs

See Creating LLBs on ni.com

From:
https://dokuwiki.hampel-soft.com/ - HAMPEL SOFTWARE ENGINEERING

Permanent link:
https://dokuwiki.hampel-soft.com/kb/labview/organisation

Last update: 2024/07/01 11:47

https://discord.com/channels/1013126142166831175/1207853099205660682/1207854230325559356
https://dokuwiki.hampel-soft.com/kb/labview/lvoop
https://www.ni.com/docs/en-US/bundle/labview/page/creating-llbs.html
https://dokuwiki.hampel-soft.com/
https://dokuwiki.hampel-soft.com/kb/labview/organisation

	11 Organising Code
	General Advice
	Project File
	Libraries
	Performance
	Migrating VIs into .lvlib

	Classes
	LLBs


